ASSP for Power Supply Applications (Secondary battery)

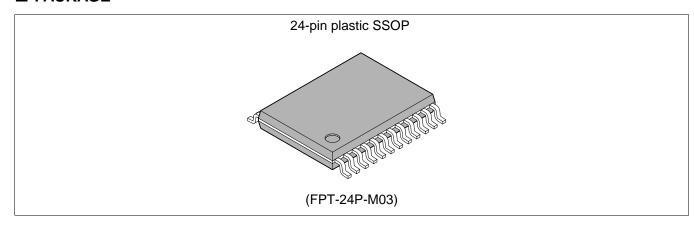
DC/DC Converter IC for Charging Li-ion Battery

MB39A114

■ DESCRIPTION

The MB39A114 is a DC/DC converter IC of pulse width modulation (PWM) type for charging, capable of independently controlling the output voltage and output current. It is suitable for down conversion.

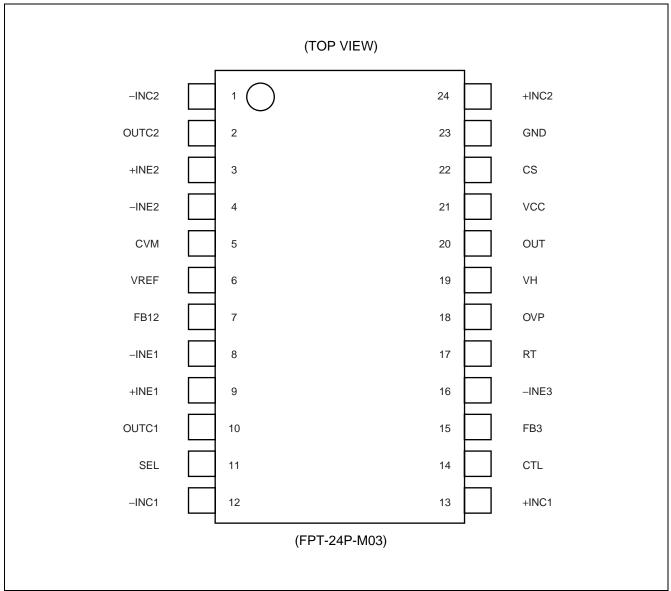
MB39A114 can dynamically control the secondary battery's charge current by detecting a voltage drop in an AC adapter to keep its power constant (dynamically-controlled charging).


This IC can easily set the charge current value, making it ideal for use as a built-in charging device in products such as notebook PC.

■ FEATURES

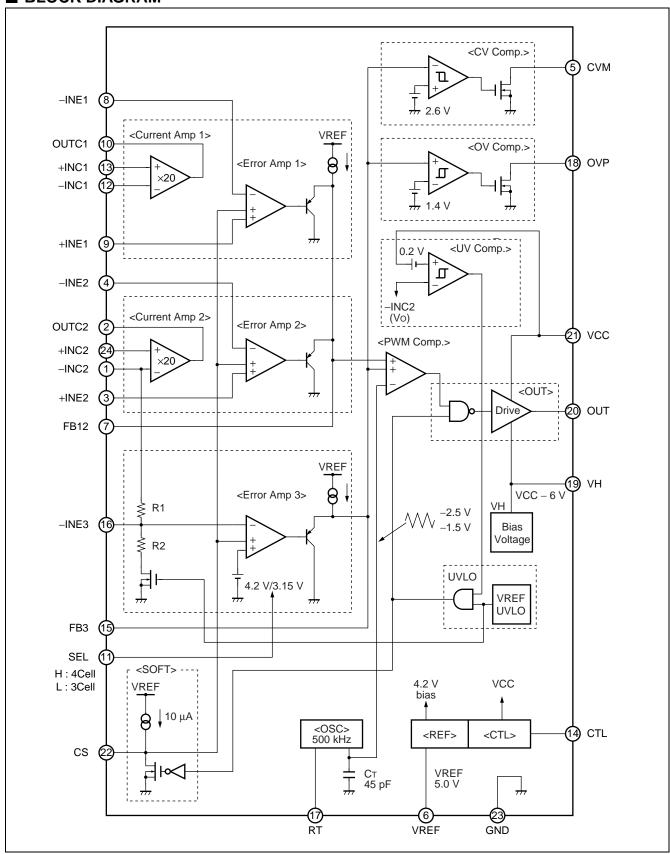
- Built-in constant current control circuit in 2-system.
- Analog control of charge current value is possible. (+INE1 terminal and +INE2 terminal)
- Built-in AC adapter detection function (When Vcc is lower than the battery voltage +0.2 V, output is fixed in the off.)
- Constant voltage control state detection function (CVM terminal) enables prevention of mis-detection for full charge.
- Built-in overvoltage detection function (OVP terminal) of charge voltage

(Continued)


■ PACKAGE

FUJITSU

- Wide range of operating power-supply voltage range: 8 V to 25 V
- · Built-in output setting resistor
- Built-in switching function (SEL terminal) of output setting voltage 16.8 V or 12.6 V
- Output voltage setting accuracy : $\pm 0.74\%$ (Ta = -10 °C to +85 °C)
- Built-in high accuracy current detection amplifier : \pm 5% (At the input voltage difference of 100 mV) ,
 - ± 15% (At the input voltage difference of 20 mV)
- Output voltage setting resistor is open to enable prevention of invalidity current at IC standby ($Icc = 0 \mu A Typ$).
- Oscillation frequency range : 100 kHz to 500 kHz
- Built-in current detection Amp with wide in-phase input voltage range: 0 V to Vcc
- Built-in soft-start function independent of loads
- Built-in standby current function : 0 μA (Typ)
- Built-in totem-pole type output stage supporting Pch MOS FET devices.


■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin No.	Symbol	I/O	Description
1	-INC2	I	Current detection amplifier (Current Amp2) inverted input terminal
2	OUTC2	0	Current detection amplifier (Current Amp2) output terminal
3	+INE2	I	Error amplifier (Error Amp2) non-inverted input terminal
4	-INE2	I	Error amplifier (Error Amp2) inverted input terminal
5	CVM	0	Open drain type output terminal of constant voltage control state detection comparator (CV Comp.)
6	VREF	0	Reference voltage output terminal
7	FB12	0	Error amplifier (Error Amp1, Error Amp2) output terminal
8	-INE1	I	Error amplifier (Error Amp1) inverted input terminal
9	+INE1	I	Error amplifier (Error Amp1) non-inverted input terminal
10	OUTC1	0	Current detection amplifier (Current Amp1) output terminal
11	SEL	0	Charge voltage setting switch terminal (3 cell or 4 cell) "H" level in SEL terminal : charge voltage setting 16.8 V (4 Cell) "L" level in SEL terminal : charge voltage setting 12.6 V (3 Cell)
12	-INC1	I	Current detection amplifier (Current Amp1) inverted input terminal
13	+INC1	I	Current detection amplifier (Current Amp1) non-inverted input terminal
14	CTL	I	Power-supply control terminal Setting the CTL terminal at "L" level places the IC in the standby mode.
15	FB3	0	Error amplifier (Error Amp3) output terminal
16	-INE3	I	Error amplifier (Error Amp3) inverted input terminal
17	RT	_	Triangular wave oscillation frequency setting resistor connection terminal
18	OVP	0	Open drain type output terminal overvoltage detection comparator (OV Comp.)
19	VH	0	Power supply terminal for FET drive circuit (VH = Vcc - 6 V)
20	OUT	0	External FET gate drive terminal
21	VCC	_	Power supply terminal for reference power supply, control circuit and output circuit
22	CS	_	Soft-start capacitor connection terminal
23	GND	_	Ground terminal
24	+INC2	I	Current detection amplifier (Current Amp2) non-inverted input terminal

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Rat	Unit		
raiailletei	Symbol	Conditions	Min	Max	Ollic	
Power supply voltage	Vcc	VCC terminal	_	28	V	
Output current	Іоит	_	_	60	mA	
Peak output current	Іоит	$Duty \le 5\% \ (t = 1/fosc \times Duty)$	_	700	mA	
Power dissipation	P□	Ta ≤ +25 °C	_	740*	mW	
Storage temperature	Тѕтс	_	- 55	+125	°C	

 $^{^*}$: The packages are mounted on the dual-sided epoxy board (10 cm \times 10 cm) .

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	nbol Conditions		Value			
Farameter	Syllibol	Conditions	Min	Тур	Max	Unit	
Power supply voltage	Vcc	VCC terminal	8		25	V	
Reference voltage output current	IREF	_	-1	_	0	mA	
VH terminal output current	Ivн	_	0	_	30	mA	
Input voltage	VINE	-INE1 to -INE3, +INE1, +INE2 terminal	0	_	5	V	
Input voltage	VINC	+INC1, +INC2, -INC1, -INC2 terminal	0		Vcc	V	
CTL terminal input voltage	Vctl	_	0		25	V	
Output current	Іоит	_	-45		+45	mA	
Peak output current	Іоит	$Duty = 5\% (t = 1/fosc \times Duty)$	-600	_	+600	mA	
CVM terminal output voltage	Vсvм	_	0	_	25	V	
CVM terminal output current	Ісум	_	0	_	1	mA	
OVP terminal output voltage	Vovp	_	0	_	25	V	
OVP terminal output current	lovp	_	0	_	1	mA	
SEL terminal input voltage	Vsel	_	0	_	25	V	
Oscillation frequency	fosc	_	100	300	500	kHz	
Timing resistor	R⊤	_	27	47	130	kΩ	
Soft-start capacitor	Cs	_	_	0.022	1.0	μF	
VH terminal capacitor	Сун			0.1	1.0	μF	
Reference voltage output capacitor	CREF	_	_	0.1	1.0	μF	
Operating ambient temperature	Та	_	-30	+25	+85	°C	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

> Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

> No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

 $(VCC = 19 \text{ V}, \text{ VREF} = 0 \text{ mA}, \text{ Ta} = +25 ^{\circ}\text{C})$

Parameter		Comple of	Din No	,	10 1, 111	Value	<i>σ</i> , τα – τ2	l lni4
Para	meter	Symbol	Pin No.	Conditions	Min	Тур	Max	Unit
	Output valtage	V _{REF1}	6	Ta = +25 °C	4.975	5.000	5.025	V
	Output voltage	V _{REF2}	6	Ta = -10 °C to +85 °C	4.963	5.000	5.037	V
Reference voltage block	Input stability	Line	6	VCC = 8 V to 25 V	_	3	10	mV
[REF]	Load stability	Load	6	VREF = 0 mA to -1 mA	_	1	10	mV
	Output current at short circuit	los	6	VREF = 1 V	-50	-25	-12	mA
Under voltage	Threshold	VTLH	6	VREF = _√	2.6	2.8	3.0	V
lockout protection	voltage	VTHL	6	VREF = "L	2.4	2.6	2.8	V
circuit block [UVLO]	Hysteresis width	Vн	6	_		0.2*	_	V
Soft start block [SOFT]	Charge current	Ics	22	_	-14	-10	-6	μΑ
Triangular wave	Oscillation frequency	fosc	20	RT = 47 kΩ	270	300	330	kHz
oscillator block [OSC]	Frequency temperature stability	Δf/fdt	20	Ta = -30 °C to +85 °C	_	1*	_	%
	Input offset voltage	Vio	3, 4, 8, 9	FB12 = 2 V	_	1	5	mV
	Input bias current	I в	3, 4, 8, 9	_	-100	-30		nA
	In-phase input voltage range	Vсм	3, 4, 8, 9	_	0	_	Vcc-1.8	V
Error amplifier	Voltage gain	A۷	7	DC	_	100*	_	dB
block [Error Amp1, Error Amp2]	Frequency bandwidth	BW	7	$A_V = 0 dB$	_	1.3*	_	MHz
2	Output voltage	V _{FBH}	7	_	4.8	5.0	_	V
	Output voltage	V _{FBL}	7	_	_	0.8	0.9	V
	Output source current	Isource	7	FB12 = 2 V	_	-120	-60	μΑ
	Output sink current	Isink	7	FB12 = 2 V	2.0	4.0		mA

^{*:} Standard design value

(VCC = 19 V, VREF = 0 mA, Ta = +25 °C)

Parameter		Comple of	D' N-	0 = 190v)	,	Value	,	
Paran	neter	Symbol Pin	Pin No.	Conditions	Min	Тур	Max	Unit
	Voltage gain	Av	15	DC	_	100*	_	dB
	Frequency bandwidth	BW	15	$A_V = 0 dB$		1.3*		MHz
	Output voltage	V _{FBH}	15	_	4.8	5.0	_	V
	Output voltage	V _{FBL}	15	_	_	0.8	0.9	V
	Output source current	Isource	15	FB3 = 2 V		-120	-60	μΑ
	Output sink current	Isink	15	FB3 = 2 V	2.0	4.0		mA
		V _{TH1}	1	SEL = 5 V, FB3 = 2 V, Ta = +25 °C	16.716	16.800	16.884	V
Error amplifier	Threshold	V _{TH2}	1	SEL = 5 V, FB3 = 2 V, Ta = -10 °C to +85 °C	16.676	16.800	16.924	V
block [Error Amp3]	voltage	Vтнз	1	SEL = 0 V, FB3 = 2 V, Ta = +25 °C	12.537	12.600	12.663	V
		V _{ТН4}	1	SEL = 0 V, FB3 = 2 V, Ta = -10 °C to +85 °C	12.507	12.600	12.694	V
	Input current	Iın	1	-INC2 = 16.8 V	_	84	150	μΑ
		IINL	1	VCC = 0 V, -INC2 = 16.8 V	_	_	1	μΑ
	Input	R1	1, 16	_	105	150	195	kΩ
	resistance	R2	16	_	35	50	65	kΩ
	SEL input voltage	Von	11	+INE3 = 4.2 V (4 Cell setting)	2	_	25	V
		Voff	11	+INE3 = 3.15 V (3 Cell setting)	0	_	0.8	V
	Input current	İselh	11	SEL = 5 V	_	50	100	μΑ
	Imput current	ISELL	11	SEL = 0 V		0	1	μΑ
	Input offset voltage	Vıo	1, 12, 13, 24	+INC1 = +INC2 = -INC1 = -INC2 = 3 V to VCC	-3	_	+3	mV
Current		I + INCH	13, 24	$+INC1 = +INC2 = 3 \text{ V to VCC},$ $\Delta V_{IN} = -100 \text{ mV}$	_	20	30	μΑ
detection amplifier block [Current Amp1, Current Amp2]	Input current	I — INCH	12	+INC1 = 3 V to VCC, $\Delta V_{\text{IN}} = -100 \text{ mV}$	_	0.1	0.2	μΑ
		I + INCL	13, 24	$\begin{aligned} +INC1 &= +INC2 = 0 \text{ V}, \\ \Delta V_{IN} &= -100 \text{ mV} \end{aligned}$	-180	-120	_	μΑ
		I — INCL	1, 12	+INC1 = +INC2 = 0 V, $\Delta V_{IN} = -100 \text{ mV}$	-195	-130		μΑ

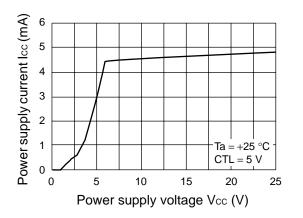
^{*:} Standard design value

(VCC = 19 V, VREF = 0 mA, Ta = +25 °C)

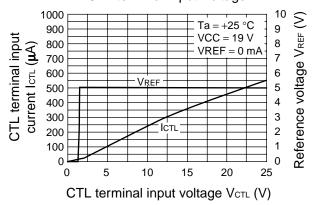
Daman		Councile of	Dia Na	O a malistica ma		Value		Unit
Parameter		Symbol	Pin No.	Conditions	Min	Тур	Max	Unit
		Voutc1	2, 10	+INC1 = +INC2 = 3 V to VCC, $\Delta V_{IN} = -100 \text{ mV}$	1.9	2.0	2.1	V
	Current detection	Voutc2	2, 10	+INC1 = +INC2 = 3 V to VCC, $\Delta V_{IN} = -20 \text{ mV}$	0.34	0.40	0.46	V
	voltage	Vоитсз	2, 10	$+INC1 = +INC2 = 0 \text{ V},$ $\Delta V_{IN} = -100 \text{ mV}$	1.8	2.0	2.2	V
		Voutc4	2, 10	$\begin{aligned} +INC1 &= +INC2 = 0 \text{ V}, \\ \Delta V_{IN} &= -20 \text{ mV} \end{aligned}$	0.2	0.4	0.6	V
Current detection	In-phase input voltage range	Vсм	1, 12, 13, 24	_	0	_	Vcc	V
amplifier block [Current Amp1, Current Amp2]	Voltage gain	Av	2, 10	+INC1 = +INC2 = 3 V to VCC, $\Delta V_{IN} = -100 \text{ mV}$	19	20	21	V/V
- Canoni, amp21	Frequency bandwidth	BW	2, 10	$A_V = 0 dB$	_	2*	_	MHz
	Output voltage	Vоитсн	2, 10	_	4.7	4.9	_	V
		Voutcl	2, 10	_		20	200	mV
	Output source current	Isource	2, 10	OUTC1 = OUTC2 = 2 V	_	-2	-1	mA
	Output sink current	İsink	2, 10	OUTC1 = OUTC2 = 2 V	150	300	_	μΑ
PWM		VTL	7, 15	Duty cycle = 0%	1.4	1.5		V
comparator block [PWM Comp.]	Threshold voltage	Vтн	7, 15	Duty cycle = 100%		2.5	2.6	V
	Output source current	Isource	20	OUT = 13 V, Duty ≤ 5% (t = 1/fosc × Duty)	_	- 400*	_	mA
Output block	Output sink current	İsink	20	OUT = 19 V, Duty ≤ 5% (t = 1/fosc × Duty)	_	400*		mA
[OUT]	Output ON	Rон	20	OUT = - 45 mA		6.5	9.8	Ω
	resistor	RoL	20	OUT = 45 mA	_	5.0	7.5	Ω
	Rise time	tr ₁	20	OUT = 3300 pF	_	50*	—	ns
	Fall time	tf₁	20	OUT = 3300 pF		50*		ns
A O = 1= :	Threshold	VTLH	21	VCC = _√ , -INC2 = 16.8 V	17.2	17.4	17.6	V
AC adaptor detection block	voltage	V _{THL}	21	VCC = 1 , −INC2 = 16.8 V	16.8	17.0	17.2	V
[UV Comp.]	Hysteresis width	Vн	21	_	_	0.4*	_	V

^{*:} Standard design value

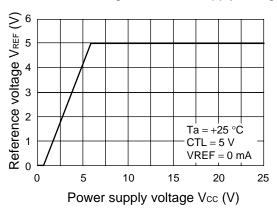
(Continued)

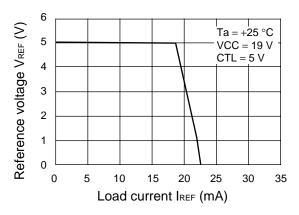

(VCC = 19 V, VREF = 0 mA, Ta = +25 °C)

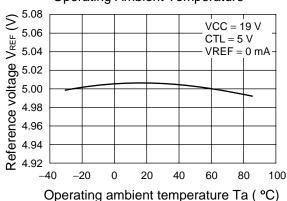
Parameter		Symbol	Din No	Conditions		Value	,	Unit
Parai	neter	Syllibol	FIII NO.	Conditions	Min	Тур	Max	Onit
	Threshold	VTLH	5	FB3 =	2.6	2.7	2.8	V
	voltage	V _{THL}	5	FB3 = 7_	2.5	2.6	2.7	V
Constant voltage control	Hysteresis width	Vн	5	_	_	0.1*	_	V
state detection block [CV Comp.]	CMV terminal output leak current	ILEAK	5	CVM = 25 V	_	0	1	μΑ
	CVM terminal output ON resistor	Ron	5	CVM = 1 mA	_	200	400	Ω
	Threshold	VTLH	18	FB3 =	1.3	1.4	1.5	V
	voltage	V _{THL}	18	FB3 = "_	1.2	1.3	1.4	V
Overvoltage	Hysteresis width	Vн	18	_	_	0.1*	_	V
detection block [OV Comp.]	OVP terminal output leak current	ILEAK	18	OVP = 25 V	_	0	1	μΑ
	OVP terminal output ON resistor	Ron	18	OVP = 1 mA	_	200	400	Ω
	CTL input	Von	14	IC operating state	2	_	25	V
Control block	voltage	Voff	14	IC standby staet	0	_	0.8	V
[CTL]	Input current	Істьн	14	CTL = 5 V	_	100	150	μΑ
	input current	ICTLL	14	CTL = 0 V	_	0	1	μΑ
Bias voltage block [VH]	Output voltage	Vн	19	VCC = 8 V to 25 V, VH = 0 mA to 30 mA	Vcc - 6.5	Vcc - 6.0	Vcc - 5.5	V
General	Standby current	Iccs	21	CTL = 0 V		0	10	μΑ
General	Power supply current	Icc	21	CTL = 5 V	_	5	7.5	mA

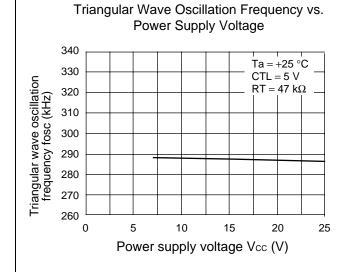

^{*:} Standard design value

■ TYPICAL CHARACTERISTICS

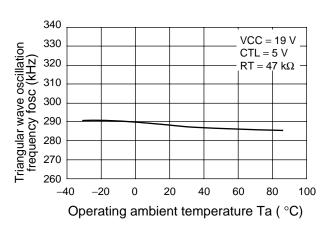

Power Supply Current vs. Power Supply Voltage


CTL terminal Input Current, Reference Voltage vs.
CTL terminal Input Voltage

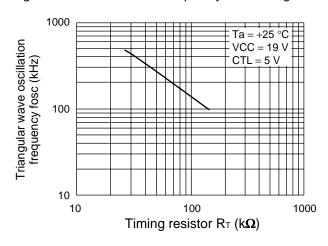

Reference voltage vs. Power Supply voltage

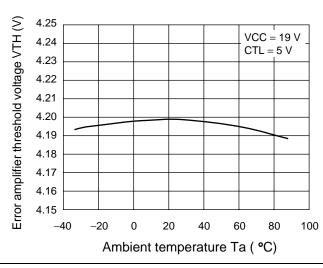


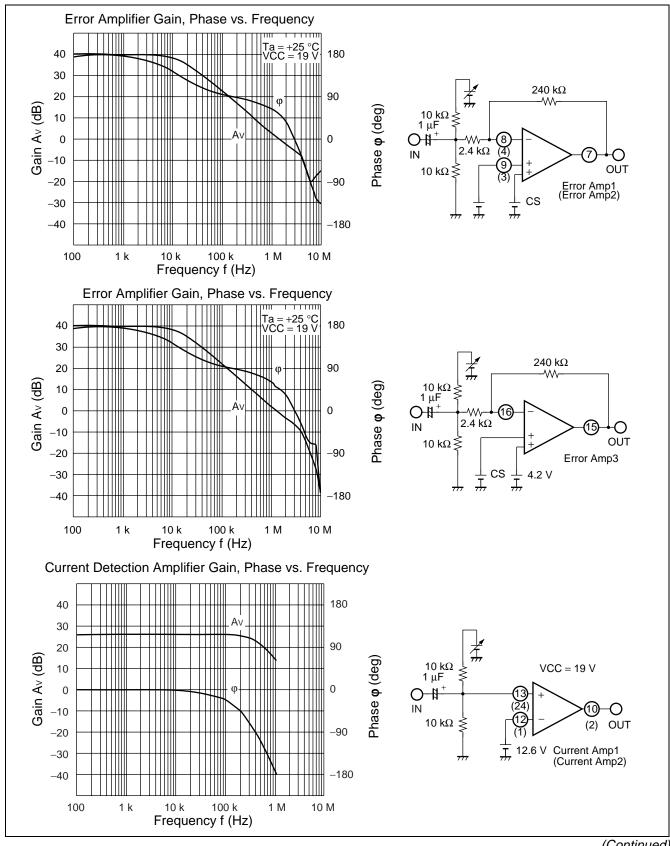
Reference Voltage vs. Load Current

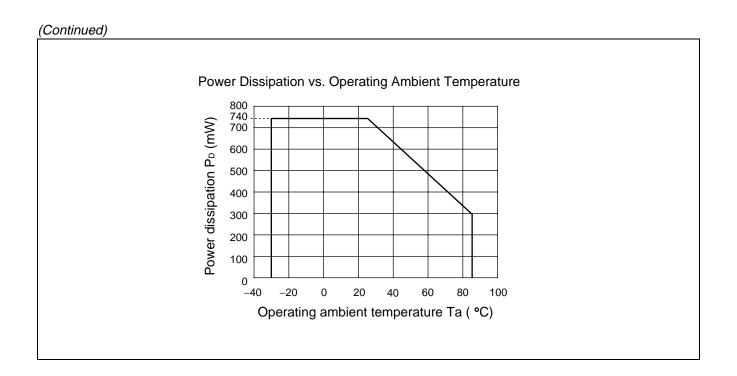


Reference Voltage vs.
Operating Ambient Temperature




Triangular Wave Oscillation Frequency vs. Operating Ambient Temperature




Triangular Wave Oscillation Frequency vs. Timing Resistor

Error Amplifier Threshold Voltage vs. Ambient Temperature

■ FUNCTIONAL DESCRIPTION

1. DC/DC Converter Block

(1) Reference voltage block (REF)

The reference voltage circuit generator uses the voltage supplied from the VCC terminal (pin 21) to generate a temperature compensated stable voltage (5.0 V Typ) used as the reference supply voltage for the internal circuits of the IC. It is also possible to supply the load current of up to 1 mA to external circuits as a output reference voltage through the VREF terminal (pin 6).

(2) Triangular wave oscillator block (OSC)

The triangular wave oscillator block has built-in capacitor for frequency setting, and generates the triangular wave oscillation waveform by connecting the frequency setting resistor with the RT terminal (pin 17).

The triangular wave is input to the PWM comparator circuits on the IC.

(3) Error amplifier block (Error Amp1)

The error amplifier (Error Amp1) detects voltage drop of the AC adapter and outputs a PWM control signal.

Also, by connecting feedback resistor and capacitor between FB12 terminal (pin 7) and –INE1 terminal (pin 8), it is possible to set the desired level of loop gain, to provide stabilized phase compensation to the system.

The CS terminal (pin 22) can be connected to a soft-start capacitor to prevent rush currents at startup. The soft start time is detected by the error amplifier, which provides a constant soft-start time independent of output load.

(4) Error amplifier block (Error Amp2)

The amplifier detects output signal from the current detection amplifier (Current Amp 2). This is amplifier providing PWM control signal by comparing to +INE2 terminal (pin3), and it is used to control the charging current.

Also, by connecting feedback resistor and capacitor between FB12 terminal (pin 7) and –INE2 terminal (pin 4), it is possible to set the desired level of loop gain, to provide stabilized phase compensation to the system.

The CS terminal (pin 22) can be connected to a soft-start capacitor to prevent rush currents at startup. The soft start time is detected by the error amplifier, which provides a constant soft-start time independent of output load.

(5) Error amplifier block (Error Amp3)

The error amplifier (Error Amp3) detects output voltage of the DC/DC converter and outputs a PWM control signal. Output voltage become 16.8 V if the SEL terminal is set in "H" level, and become 12.6 V if it sets in "L" level.

Also, by connecting feedback resistor and capacitor between FB3 terminal (pin 15) and –INE3 terminal (pin 16), it is possible to set the desired level of loop gain, to provide stabilized phase compensation to the system.

The CS terminal (pin 22) can be connected to a soft-start capacitor to prevent rush currents at startup. The soft start time is detected by the error amplifier, which provides a constant soft-start time independent of output load.

(6) Current detection amplifier block (Current Amp1)

The current detection amplifier (Current Amp1) detects a voltage drop which occurs between both ends of the output sense resistor (Rs) due to the flow of the charge current, using the +INC1 terminal (pin 13) and -INC1 terminal (pin 12). Then it outputs the signal amplified by 20 times to the error amplifier (Error amp1) at the next stage.

(7) Current detection amplifier block (Current Amp2)

The current detection amplifier (Current Amp2) detects a voltage drop which occurs between both ends of the output sense resistor (Rs) due to the flow of the charge current, using the +INC2 terminal (pin 24) and -INC2 terminal (pin 1). Then it outputs the signal amplified by 20 times to the error amplifier (Error Amp2) at the next stage.

(8) PWM comparator block (PWM Comp.)

The PWM comparator circuit is a voltage-pulse width converter that controls the output duty of the error amplifier (Error Amp.1 to Error Amp.3) according to the output voltage.

It is compared between triangular wave voltage generated in triangular wave oscillator and error amplifier output voltage and during intervals when the triangular wave voltage is lower than the error amplifier output voltage, an external output transistor is switched on.

(9) Output block (OUT)

The output circuit uses a totem-pole configuration and is capable of driving an external P-ch MOS FET device.

For the output "L" level, set the output amplitude to 6 V (Typ) using the voltage generated by the bias voltage block (VH) .

This results in higher conversion efficiency and suppressing the withstand voltage of the connected external transistor even in a wide range of input voltages.

(10) Power control (CTL)

Setting the CTL terminal (14 pin) low places the IC in the standby mode. (Power supply current 10 μ A max at standby mode.)

CTL function table

CTL	Power			
L	OFF (Standby)			
Н	ON (Active)			

(11) Bias voltage block (VH)

The bias voltage circuit outputs $V_{CC} - 6 \text{ V}$ (Typ) as the minimum potential of the output circuit. In the standby mode, this circuit outputs the potential equal to VCC.

2. Protection Function

(1) Under voltage lockout protection circuit (UVLO)

The transient state, which occurs when the power supply (VCC) is turned on, a momentary decrease in supply voltage or internal reference voltage (VREF), may cause the control IC to malfunction, resulting in breakdown or degradation of the system. To prevent such malfunctions, under voltage lockout protection circuit detects a internal reference voltage drop and fixes the OUT terminal (pin 20) at the "H" level.

The system restores voltage supply when the internal reference voltage reaches the threshold voltage of the under voltage lockout protection circuit.

Protection circuit (UVLO) operation function table.

At UVLO operating (VREF voltage is lower than UVLO threshold voltage.)

OUT	CS	CVM	OVP
Н	L	Н	Н

(2) AC adapter detection block (UV Comp.)

This block detects that power-supply voltage (VCC) is lower than the battery voltage +0.2~V (Typ), and OUT terminal (pin 18) is fixed at the High level. The system restores voltage supply when the supply voltage reaches the threshold voltage of the AC adapter detection block.

Protection circuit (UV Comp.) operation function table.

At UV Comp. operating (VCC voltage is lower than UV Comp. threshold voltage.)

OUT	CS
Н	L

3. Soft start Function

Soft start block (SOFT)

Connecting a capacitor to the CS terminal (pin 22) prevents rush currents from flowing upon activation of the power supply. Using the error amplifier to detect a soft start allows to soft-start at constant setting time intervals independent of the output load of the DC/DC converter.

4. Detection Function

(1) Constant voltage control state detection block. (CV Comp.)

Error amplifier (Error Amp3) detects the voltage at FB3 terminal (pin 15) falling to or below 2.6 V (Typ) and outputs the Low level to the constant voltage control state detection block output terminal (CVM, pin 5).

(2) Overvoltage state detection block (OV Comp.)

Error amplifier (Error Amp3) detects the voltage at FB3 terminal (pin 15) falling to or below 1.3 V (Typ) and outputs the High level to the overvoltage detection block output terminal (OVP, pin 18).

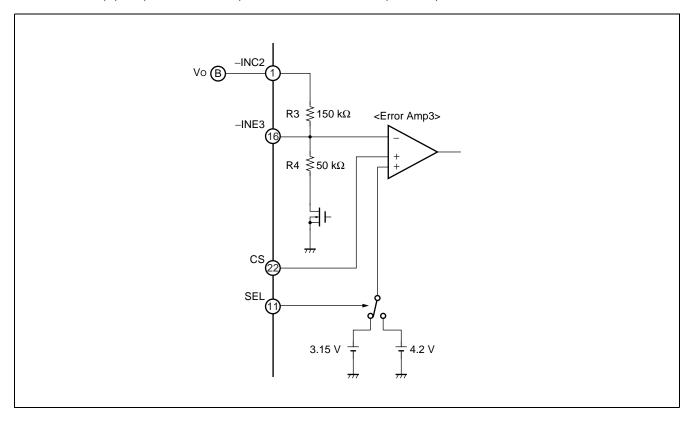
5. Switching function

Output voltage switching function block (SEL)

The charge voltage is set in 16.8 V or 12.6 V by SEL terminal (pin 11).

SEL function table

SEL	DC/DC output setting voltage
Н	16.8 V
L	12.6 V


■ SETTING THE CHARGING VOLTAGE

The setting of the charging voltage is switched to 3 cell or 4 cell by the SEL terminal. As for the charge voltage, the SEL terminal becomes 16.8 V at "H" level. It become 12.6 V at "L" level.

Charging voltage of battery: Vo

 $V_0 (V) = (150 \text{ k}\Omega + 50 \text{ k}\Omega) / 50 \text{ k}\Omega \times 4.20 \text{ V} = 16.8 \text{ (SEL} = H)$

 $V_0 (V) = (150 \text{ k}\Omega + 50 \text{ k}\Omega) / 50 \text{ k}\Omega \times 3.15 \text{ V} = 12.6 \text{ (SEL} = L)$

■ SETTING THE CHARGING CURRENT

The charging current value (output limit current value) is set at the +INE2 terminal (pin 3).

If a current exceeding the set value attempts to flow, the charge voltage drops according to the set current value.

Battery charge current setting voltage: +INE2

+INE2 (V) = $20 \times I1$ (A) $\times Rs$ (Ω)

■ SETTING THE TRIANGULAR WAVE OSCILLATION FREQUENCY

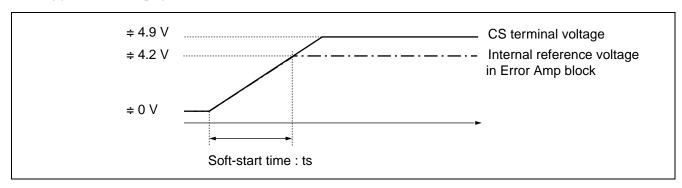
The triangular wave oscillation frequency can be set by connecting a timing resistor (R_T) to the RT terminal (pin 17).

Triangular wave oscillation frequency: fosc

fosc (kHz) \Rightarrow 14100/R_T (k Ω)

■ SETTING THE SOFT START TIME

(1) Setting constant voltage mode soft start


To prevent rush currents when the IC is turned on, you can set a soft-start by connecting soft-start capacitors (Cs) to the CS terminal (pin 22).


When CTL terminal (pin 14) is "H" levels and IC is activated ($Vcc \ge UVLO$ threshold voltage), Q2 becomes off and the external soft-start capacitors (Cs) connected to CS terminal are charged at 10 μ A.

The error amplifier output (FB3 terminal (pin 15)) is determined by comparison between the lower voltage of the two non-inverted input terminal voltage (internal reference voltage 4.2 V (Typ) , CS terminal voltages) and the inverted input terminal voltage (–INE3 terminal (pin 16) voltage). The FB3 is decided for the soft-start period (CS terminal voltage < 4.2 V) by the comparison between –INE3 terminal voltage and CS terminal voltage. The DC/DC converter output voltage rises in proportion to the CS terminal voltage as the soft-start capacitor externally connected to the CS terminal is charged. The soft-start time is obtained from the following formula :

Soft start time: ts (time until output voltage 100%)

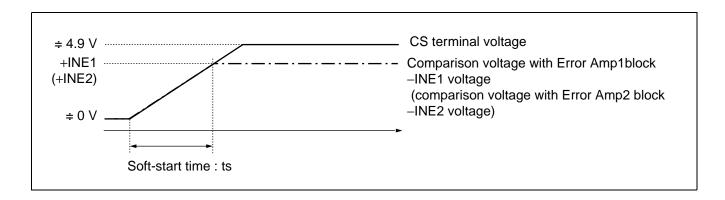
ts (s)
$$\Rightarrow$$
 0.42 \times Cs (μ F)

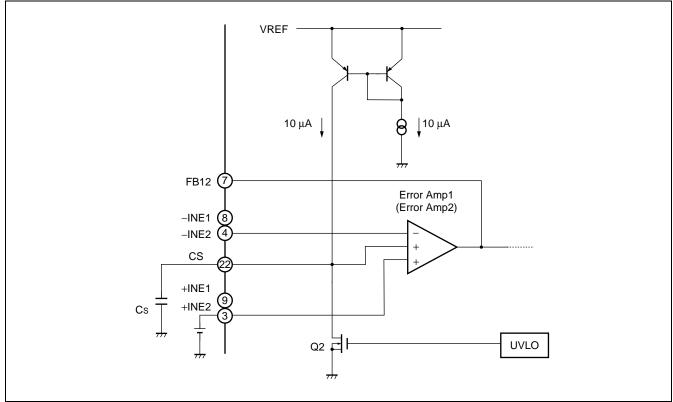
Soft start circuit

(2) Setting constant current mode soft-start

To prevent rush currents when the IC is turned on, you can set a soft-start by connecting soft-start capacitors (Cs) to the CS terminal (pin 22).

When CTL terminal (pin 14) is "H" levels and IC activated (VREF \geq UVLO threshold voltage), Q2 becomes off and the external soft-start capacitors (Cs) connected to CS terminal are charged at 10 μ A.

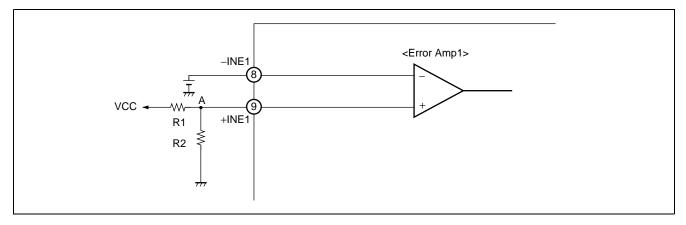

The error amplifier1 output (FB12 terminal (pin 7)) is determined by comparison between the lower voltage of the two non-inverted input terminal voltage (+INE1 terminal (pin 9) voltage, CS terminal voltages) and the inverted input terminal voltage (-INE1 terminal (pin 8) voltage). The FB12 is decided for the soft-start period (CS terminal voltage < +INE1) by the comparison between -INE1 terminal voltage and CS terminal voltage. The DC/DC converter output voltage rises in proportion to the CS terminal voltage as the soft-start capacitor externally connected to the CS terminal is charged.


The error amplifier2 output (FB12 terminal (pin 7)) is determined by comparison between the lower voltage of the two non-inverted input terminal voltage (+INE2 terminal (pin 3) voltage, CS terminal voltages) and the inverted input terminal voltage (-INE2 terminal (pin 4) voltage). The FB12 is decided for the soft-start period (CS terminal voltage < +INE2) by the comparison between -INE2 terminal voltage and CS terminal voltage. The DC/DC converter output voltage rises in proportion to the CS terminal voltage as the soft-start capacitor externally connected to the CS terminal is charged.

The soft-start time is obtained from the following formula:

Soft start time: ts (time until output voltage 100%)

ts (s) \Rightarrow +INE1 (+INE2) /10 μ A \times Cs (μ F)

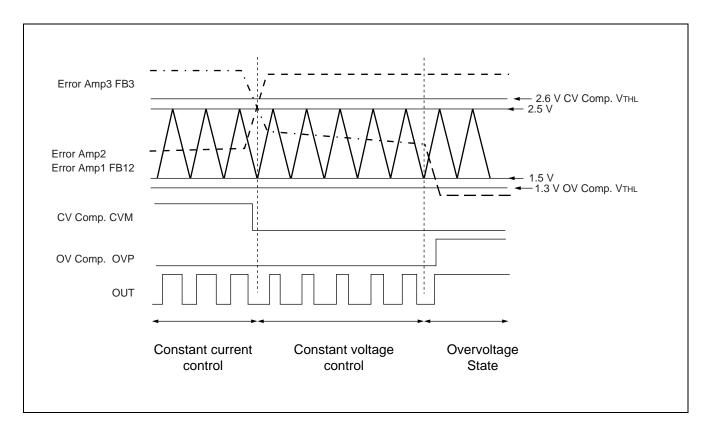

Soft start circuit

■ SETTING THE DYNAMICALLY-CONTROLLED CHARGING

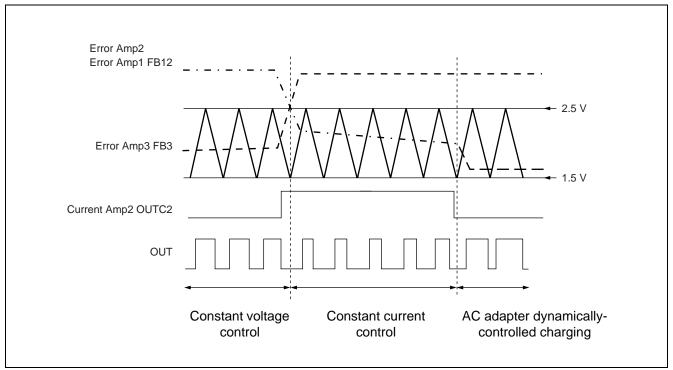
With an external resistor connected to +INE1 terminal (pin 9), dynamically-controlled charging mode to reduce the charge current to keep AC adapter power constant when the partial potential point A of AC adapter voltage (VCC) become lower the -INE1 terminal voltage.

Dynamically-controlled charging setting voltage: Vth

$$Vth (V) = (R1 + R2)/R2 \times -INE1$$

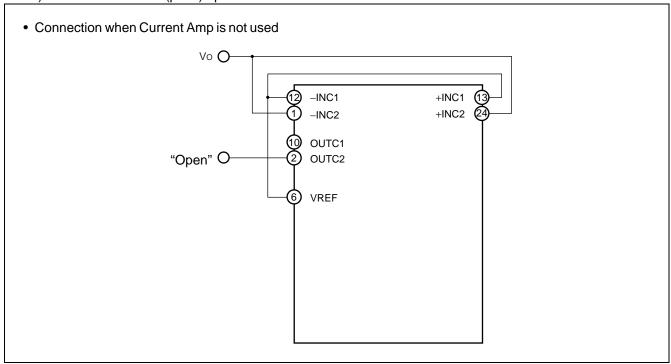


■ ABOUT CONSTANT VOLTAGE CONTROL STATE DETECTION/ OVERVOLTAGE DETECTION TIMING CHART

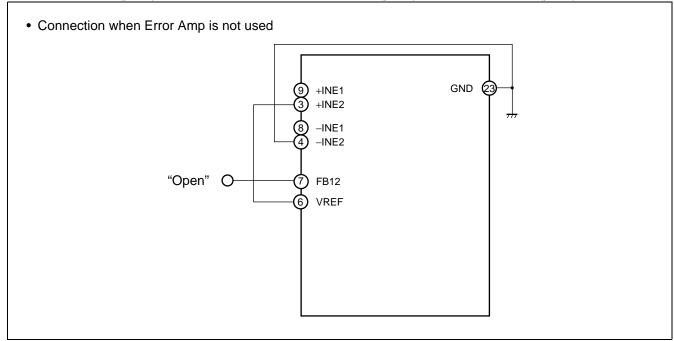

In the constant voltage control state, the CVM terminal (pin 5) of the constant voltage control state detection block (CV Comp.) outputs the "L" level when the voltage at the FB3 terminal (pin 15) of the error amplifier (Error Amp3) becomes 2.6 V (Typ) or less.

When the DC/DC converter output voltage enters the state of the overvoltage higher than a setting voltage, the voltage at FB3 terminal (pin 15) of the error amplifier (Error Amp3) becomes 1.3 V (Typ) or less. As a result, the OVP terminal (pin 18) of the overvoltage detection block (OVComp.) outputs the "H" level.

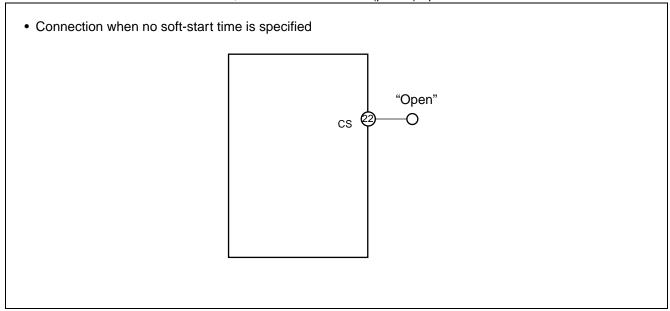
Both of the CVM terminal and the OVP terminal are open-drain output forms :



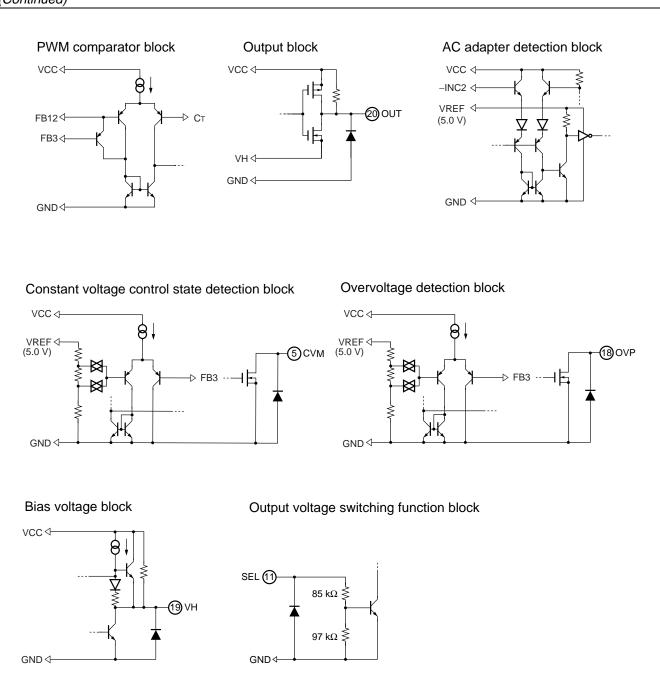
■ ABOUT THE OPERATION TIMING CHART


■ PROCESSING WITHOUT USING OF THE CURRENT AMP1 AND AMP2

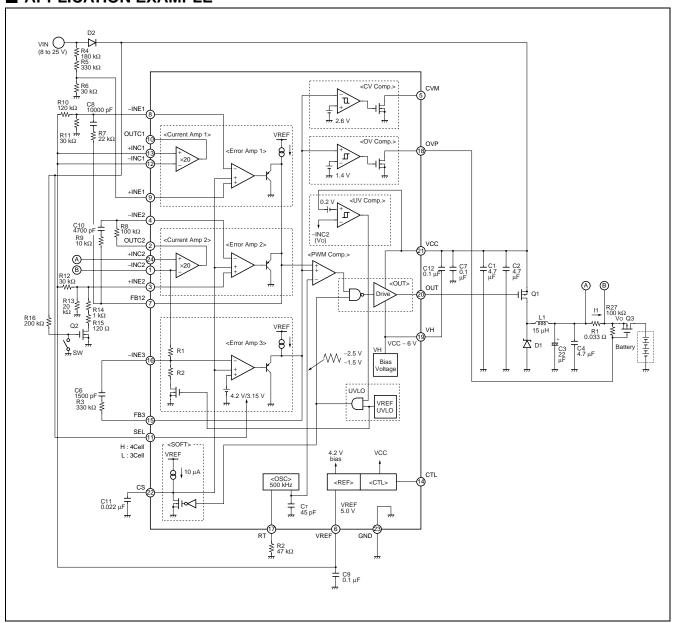
When Current Amp is not used, connect the +INC1 terminal (pin 13), and -INC1 terminal (pin 12) to VREF, and be short-circuited of +INC2 terminal (pin 24) and -INC2 terminal (pin 1), and then leave OUTC1 terminal (pin 10) and OUTC terminal (pin 2) open.


■ PROCESSING WITHOUT USING OF THE ERROR AMP1 AND AMP2

When Error Amp is not used, leave FB12 terminal (pin 7) open and connect the –INE1 terminal (pin 8) and –INE2 terminal (pin 4) to GND, and connect +INE1 terminal (pin 9) and +INE2 terminal (pin 3) to VREF.



■ PROCESSING WITHOUT USING OF THE CS TERMINAL


When soft-start function is not used, leave the CS terminal (pin 22) open.

■ APPLICATION EXAMPLE

■ PARTS LIST

COMPONENT	ITEM	SPECIF	ICATION	VENDOR	PARTS No.
Q1, Q3	Pch FET	VDS = −30 V	', ID = $-7.0 A$	NEC	μPA2714GR
Q2	Nch FET	VDS = 30 V	/, ID = 1.4 A	SANYO	MCH3401
D1, D2	Diode	VF = 0.42 V (M	ax) , At IF = 3 A	ROHM	RB053L-30
L1	Inductor	15 μΗ	$3.6~\text{A},50~\text{m}\Omega$	SUMIDA	CDRH104R-150
C1, C2, C4	Ceramics Condenser	4.7 μF	25 V	TDK	C3225JB1E475K
C3	OS-CON™	22 μF	20 V	SANYO	20SVP22M
C6	Ceramics Condenser	1500 pF	50 V	TDK	C1608JB1H152K
C7, C9	Ceramics Condenser	0.1 μF	50 V	TDK	C1608JB1H104K
C8	Ceramics Condenser	0.01 μF	50 V	TDK	C1608JB1H103K
C10	Ceramics Condenser	4700 pF	50 V	TDK	C1608JB1H472K
C11	Ceramics Condenser	0.022 μF	50 V	TDK	C1608JB1H223K
C12	Ceramics Condenser	0.1 μF	50 V	TDK	C1608JB1H104K
R1	Resistor	33 mΩ	1%	KOA	SL1TTE33LOF
R2	Resistor	47 kΩ	0.5%	ssm	RR0816P-473-D
R3, R5	Resistor	330 kΩ	0.5%	ssm	RR0816P-334-D
R4	Resistor	180 kΩ	0.5%	ssm	RR0816P-184-D
R6	Resistor	30 kΩ	0.5%	ssm	RR0816P-303-D
R7	Resistor	22 kΩ	0.5%	ssm	RR0816P-223-D
R8	Resistor	100 kΩ	0.5%	ssm	RR0816P-104-D
R9	Resistor	10 kΩ	0.5%	ssm	RR0816P-103-D
R10	Resistor	120 kΩ	0.5%	ssm	RR0816P-124-D
R11, R12	Resistor	30 kΩ	0.5%	ssm	RR0816P-303-D
R13	Resistor	20 kΩ	0.5%	ssm	RR0816P-203-D
R14	Resistor	1 kΩ	0.5%	ssm	RR0816P-102-D
R15	Resistor	120 Ω	0.5%	ssm	RR0816P-121-D
R16	Resistor	200 kΩ	0.5%	ssm	RR0816P-204-D
R27	Resistor	100 kΩ	0.5%	ssm	RR0816P-104-D

Note: NEC : NEC Corporation

SANYO : SANYO Electric Co., Ltd.

ROHM : ROHM CO., LTD.
SUMIDA : Sumida Corporation
TDK : TDK Corporation
KOA : KOA Corporation
ssm : SUSUMU CO., LTD.

OS-CON is a trademark of SANYO Electric Co., Ltd.

■ SELECTION OF COMPONENTS

Pch MOS FET

The P-ch MOS FET for switching use should be rated for at least +20% more than the input voltage. To minimize continuity loss, use a FET with low RDS(ON) between the drain and source. For high input voltage and high frequency operation, on-cycle switching loss will be higher so that power dissipation must be considered. In this application, the NEC μ PA2714GR is used. Continuity loss, on/off switching loss and total loss are determined by the following formulas. The selection must ensure that peak drain current does not exceed rated values.

Continuity loss: Pc

$$Pc = I_D^2 \times R_{DS}$$
 (on) $\times Duty$

On-cycle swiching loss: Ps (ON)

Ps (on) =
$$\frac{V_D \text{ (Max) } \times I_D \times tr \times fosc}{6}$$

Off-cycle switching loss: Ps (OFF)

$$Ps (OFF) = \frac{V_D (Max) \times I_D (Max) \times tf \times fosc}{6}$$

Total loss: P⊤

$$P_T = P_C + P_S (ON) + P_S (OFF)$$

Example: Using the μ PA2714GR

16.8 V setting

Input voltage V_{IN} (Max) = 25 V, output voltage $V_O = 16.8$ V, drain current $I_D = 3$ A, oscillation frequency fosc = 300 kHz, L = 15 μ H, drain-source on resistance R_{DS} (ON) \Rightarrow 18 m Ω , tr \Rightarrow 15 ns, tf \Rightarrow 42 ns

Drain current (Max): ID (Max)

$$I_{D} (Max) = I_{O} + \frac{V_{IN} (Max) - V_{O}}{2L} t_{ON}$$

$$= 3 + \frac{25 - 16.8}{2 \times 15 \times 10^{-6}} \times \frac{1}{300 \times 10^{3}} \times 0.672$$

$$\stackrel{\Rightarrow}{=} 3.6 A$$

Drain current (Min): ID (Min)

$$I_{D} (Min) = I_{O} - \frac{V_{IN} (Max) - V_{O}}{2L} t_{ON}$$

$$= 3 - \frac{25 - 16.8}{2 \times 15 \times 10^{-6}} \times \frac{1}{300 \times 10^{3}} \times 0.672$$

$$= 2.4 \text{ A}$$

$$Pc = I_{D^2} \times R_{DS} \text{ (oN)} \times Duty$$

= $3^2 \times 0.018 \times 0.672$

$$Ps (ON) = \frac{V_D \times I_D \times tr \times fosc}{6}$$
$$= \frac{25 \times 3 \times 15 \times 10^{-9} \times 300 \times 10^3}{6}$$

$$Ps (OFF) = \frac{V_D \times I_D (Max) \times tf \times fosc}{6}$$
$$= \frac{25 \times 3.6 \times 42 \times 10^{-9} \times 300 \times 10^3}{6}$$

$$P_T = P_C + P_S (o_N) + P_S (o_{FF})$$

 $\div 0.109 + 0.056 + 0.189$
 $\div 0.354 W$

The above power dissipation figures for the μPA2714GR are satisfied with ample margin at 2.0 W.

12.6 V setting

Input voltage V_{IN} (Max) = 22 V, output voltage V_O = 12.6 V, drain current I_D = 3 A, oscillation frequency fosc = 300 kHz, L = 15 μ H, drain-source on resistance R_{DS} (o_N) \doteqdot 18 m Ω , tr \doteqdot 15 ns, tf \doteqdot 42 ns

Drain current (Max) : ID (Max)

$$I_{D (Max)} = I_{O} + \frac{V_{IN (Max)} - V_{O}}{2L} ton$$

$$= 3 + \frac{22 - 12.6}{2 \times 15 \times 10^{-6}} \times \frac{1}{300 \times 10^{3}} \times 0.572$$

$$\stackrel{\Rightarrow}{=} 3.6 \text{ A}$$

Drain current (Min): ID (Min)

$$I_{D} (Min) = I_{O} - \frac{V_{IN} (Max) - V_{O}}{2L} t_{ON}$$

$$= 3 - \frac{22 - 12.6}{2 \times 15 \times 10^{-6}} \times \frac{1}{300 \times 10^{3}} \times 0.572$$

$$\stackrel{\Rightarrow}{=} 2.4 \text{ A}$$

$$Pc = I_{D^{2}} \times R_{DS} (o_{N}) \times Duty$$

$$= 3^{2} \times 0.018 \times 0.572$$

$$\stackrel{?}{=} 0.093 W$$

$$Ps (o_{N}) = \frac{V_{D} \times I_{D} \times tr \times fosc}{6}$$

$$= \frac{22 \times 3 \times 15 \times 10^{-9} \times 300 \times 10^{3}}{6}$$

$$\stackrel{?}{=} \frac{0.050 W}{6}$$

$$Ps (o_{FF}) = \frac{V_{D} \times I_{D} (Max) \times tf \times fosc}{6}$$

$$= \frac{22 \times 3.6 \times 42 \times 10^{-9} \times 300 \times 10^{3}}{6}$$

$$\stackrel{?}{=} \frac{0.166 W}{6}$$

$$P_{T} = P_{C} + P_{S} (o_{N}) + P_{S} (o_{FF})$$

$$\stackrel{?}{=} 0.093 + 0.050 + 0.166$$

$$\stackrel{?}{=} 0.309 W$$

The above power dissipation figures for the μPA2714GR are satisfied with ample margin at 2.0 W.

• Inductor

In selecting inductors, it is of course essential not to apply more current than the rated capacity of the inductor, but also to note that the lower limit for ripple current is a critical point that if reached will cause discontinuous operation and a considerable drop in efficiency. This can be prevented by choosing a higher inductance value, which will enable continuous operation under light loads. Note that if the inductance value is too high, however, direct current resistance (DCR) is increased and this will also reduce efficiency. The inductance must be set at the point where efficiency is greatest.

Note also that the DC superimposition characteristics become worse as the load current value approaches the rated current value of the inductor, so that the inductance value is reduced and ripple current increases, causing loss of efficiency. The selection of rated current value and inductance value will vary depending on where the point of peak efficiency lies with respect to load current. Inductance values are determined by the following formulas.

The L value for all load current conditions is set so that the peak to peak value of the ripple current is 1/2 the load current or less.

Inductance value: L

$$L \ge \frac{2(V_{IN} - V_O)}{I_O} t_{ON}$$

16.8 V output Example)

$$L \ge \frac{2 \left(V_{\text{IN}} \left(\text{Max} \right) - V_{\text{O}} \right)}{\text{Io}} \quad to_{\text{N}}$$

$$\ge \frac{2 \times \left(25 - 16.8 \right)}{3} \times \frac{1}{300 \times 10^{3}} \times \quad 0.672$$

$$\ge \quad 12.2 \, \mu\text{H}$$

12.6 V output Example)

$$L \ge \frac{2 \left(V_{\text{IN}} \left(_{\text{Max}} \right) - V_{\text{O}} \right)}{\text{Io}} \quad \text{ton}$$

$$\ge \frac{2 \times \left(22 - 12.6 \right)}{3} \times \frac{1}{300 \times 10^{3}} \times \quad 0.572$$

$$\ge \frac{12.0 \, \mu \text{H}}{3}$$

Inductance values derived from the above formulas are values that provide sufficient margin for continuous operation at maximum load current, but at which continuous operation is not possible at light loads. It is therefore necessary to determine the load level at which continuous operation becomes possible. In this application, the SUMIDA CDRH104R-150 is used. The following formula is available to obtain the load current as a continuous current condition when 15 μ H is used.

The value of the load current satisfying the continuous current condition: lo

$$lo \ge \frac{Vo}{2L}$$
 toff

Example) Using the CDRH104R-150

15 μ H (tolerance \pm 30%), rated current = 3.6 A

16.8 V output

$$lo \ge \frac{Vo}{2L} toff$$

$$\ge \frac{16.8}{2 \times 15 \times 10^{-6}} \times \frac{1}{300 \times 10^{3}} \times (1 - 0.672)$$

$$\ge 0.61 A$$

12.6 V output

$$lo \ge \frac{Vo}{2L} toff$$

$$\ge \frac{12.6}{2 \times 15 \times 10^{-6}} \times \frac{1}{300 \times 10^{3}} \times (1 - 0.572)$$

$$\ge 0.60 A$$

To determine whether the current through the inductor is within rated values, it is necessary to determine the peak value of the ripple current as well as the peak-to-peak values of the ripple current that affect the output ripple voltage. The peak value and peak-to-peak value of the ripple current can be determined by the following formulas.

Peak Value: IL

$$I_L \geq -I_O + - \frac{V_{IN} - V_O}{2L} - t_{ON}$$

Peak-to-peak Value:

 Δl_{L}

$$\Delta I_L = \frac{V_{IN} - V_O}{L} \quad ton$$

Example) Using the CDRH104R-150 $15 \mu H$ (tolerance $\pm 30\%$), rated current = 3.6 A

Peak Value 16.8 V output

$$\begin{split} I_L \geq & I_O + \frac{V_{IN} - V_O}{2L} t_{ON} \\ \geq & 3 + \frac{25 - 16.8}{2 \times 15 \times 10^{-6}} \times \frac{1}{300 \times 10^3} \times \ 0.672 \\ \geq & 3.6 \ A \end{split}$$

12.6 V output

$$\begin{split} I_L \geq & I_O + \frac{V_{IN} - V_O}{2L} \ t_{ON} \\ \geq & 3 + \frac{22 - 12.6}{2 \times 15 \times 10^{-6}} \times \frac{1}{300 \times 10^3} \times \ 0.572 \\ \geq & \underline{3.6 \ A} \end{split}$$

Peak-to-peak Value 16.8 V output

$$\Delta I_L = \frac{V_{IN} - V_O}{L} \quad to_N$$

$$= \frac{25 - 16.8}{15 \times 10^{-6}} \times \frac{1}{300 \times 10^3} \times 0.672$$

$$\stackrel{\div}{=} \frac{1.22 \text{ A}}{}$$

12.6 V output

$$\Delta I_L = \frac{V_{IN} - V_O}{L} \quad t_{ON}$$

$$= \frac{22 - 12.6}{15 \times 10^{-6}} \times \frac{1}{300 \times 10^3} \times 0.572$$

$$\stackrel{\div}{=} 1.2 \text{ A}$$

• Flyback diode

Shottky barrier diode (SBD) is generally used for the flyback diode when the reverse voltage to the diode is less than 40V. The SBD has the characteristics of higher speed in terms of faster reverse recovery time, and lower forward voltage, and is ideal for achieving high efficiency. As long as the DC reverse voltage is sufficiently higher than the input voltage, and the mean current flowing during the diode conduction time is within the mean output current level, and as the peak current is within the peak surge current limits, there is no problem. In this application the ROHM RB053L-30 are used. The diode mean current and diode peak current can be obtained by the following formulas.

Diode mean current : IDi

$$I_{Di} \ge I_{O} \times (1 - \frac{V_{O}}{V_{IN}})$$

Diode peak current: IDip

$$I_{Dip} \ge (Io + \frac{Vo}{2L} t_{OFF})$$

Example) Using the RB053L-30

VR (DC reverse voltage) = 30 V, mean output current = 3.0 A, peak surge current = 70 A, VF(forward voltage) = 0.42 V, at IF = 3.0 A

16.8 V output

$$I_{Di} \ge Io \times (1 - \frac{Vo}{V_{IN}})$$

$$\ge 3 \times (1 - 0.672)$$

$$\ge 0.984 A$$

12.6 V output

$$I_{Di} \ge I_{O} \times \left(1 - \frac{V_{O}}{V_{IN}}\right)$$

$$\ge 3 \times (1 - 0.572)$$

$$\ge 1.284 \text{ A}$$

MB39A114

16.8 V output

$$I_{Dip} \ge (Io + \frac{Vo}{2L} \text{ toff})$$
 $\ge 3.6 \text{ A}$

12.6 V output

$$I_{Dip} \ge (Io + \frac{Vo}{2L} toff)$$

 $\ge 3.6 A$

Smoothing capacitor

The smoothing capacitor is an indispensable element for reducing ripple voltage in output. In selecting a smoothing capacitor, it is essential to consider equivalent series resistance (ESR) and allowable ripple current. Higher ESR means higher ripple voltage, so that to reduce ripple voltage it is necessary to select a capacitor with low ESR. However, the use of a capacitor with low ESR can have substantial effects on loop phase characteristics, and therefore requires attention to system stability. Care should be also taken to use a capacity with sufficient margin for allowable ripple current. This application uses the 20SVP22M (OS-CON™: SANYO) . The ESR, capacitance value, and ripple current can be calculated from the following formulas.

Equivalent series resistance:

ESR

$$ESR \leq \frac{\Delta Vo}{\Delta I_{1}} - \frac{1}{2\pi fC_{1}}$$

Capacitance value: CL

$$C_L \geq \frac{\Delta I_L}{2\pi f \; (\Delta Vo - \Delta I_L \times ESR)}$$

Ripple current: ICLrms

$$IC_{Lrms} \ge \frac{(V_{IN} - V_{O}) t_{ON}}{2\sqrt{3}L}$$

Example) Using the 20SVP22M

Rated voltage = 20 V, ESR = 60 m Ω , maximum allowable ripple current = 1450 mArms

Equivalent series resistance 16.8 V output

$$\begin{split} \text{ESR} & \leq \frac{\Delta Vo}{\Delta I_L} - \frac{1}{2\pi f C_L} \\ & \leq \frac{0.168}{1.22} - \frac{1}{2\pi \times 300 \times 10^3 \times 22 \times 10^{-6}} \\ & \leq \frac{114 \text{ m}\Omega}{2\pi \times 300 \times 10^3 \times 22 \times 10^{-6}} \end{split}$$

12.6 V output

$$\begin{split} \text{ESR} & \leq \frac{\Delta \text{Vo}}{\Delta \text{I}_L} - \frac{1}{2\pi f C_L} \\ & \leq \frac{0.126}{1.2} - \frac{1}{2\pi \times 300 \times 10^3 \times 22 \times 10^{-6}} \\ & \leq \frac{80 \text{ m}\Omega}{2\pi \times 300 \times 10^3 \times 22 \times 10^{-6}} \end{split}$$

Capacitance value 16.8 V output

$$C_L \ge \frac{\Delta I_L}{2\pi f \left(\Delta Vo - \Delta I_L \times ESR\right)}$$

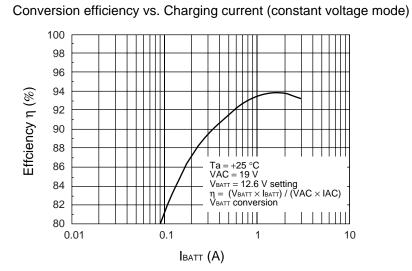
$$\ge \frac{1.22}{2\pi \times 300 \times 10^3 \times \left(0.168 - 1.22 \times 0.06\right)}$$

$$\ge \frac{6.8 \, \mu F}{2\pi \times 10^3 \times 10^3 \times 10^3 \times 10^3 \times 10^3 \times 10^3}$$

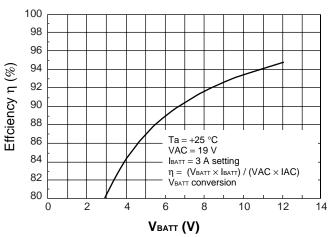
12.6 V output

$$\begin{split} C_L & \geq \frac{\Delta I_L}{2\pi f \left(\Delta Vo - \Delta I_L \times ESR\right)} \\ & \geq \frac{1.2}{2\pi \times 300 \times 10^3 \times \left(0.126 - 1.2 \times 0.06\right)} \\ & \geq \frac{11.8 \, \mu F}{} \end{split}$$

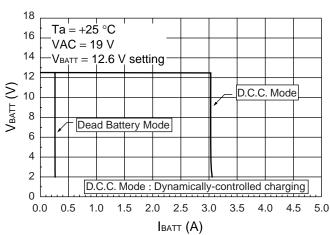
Ripple current 16.8 V output

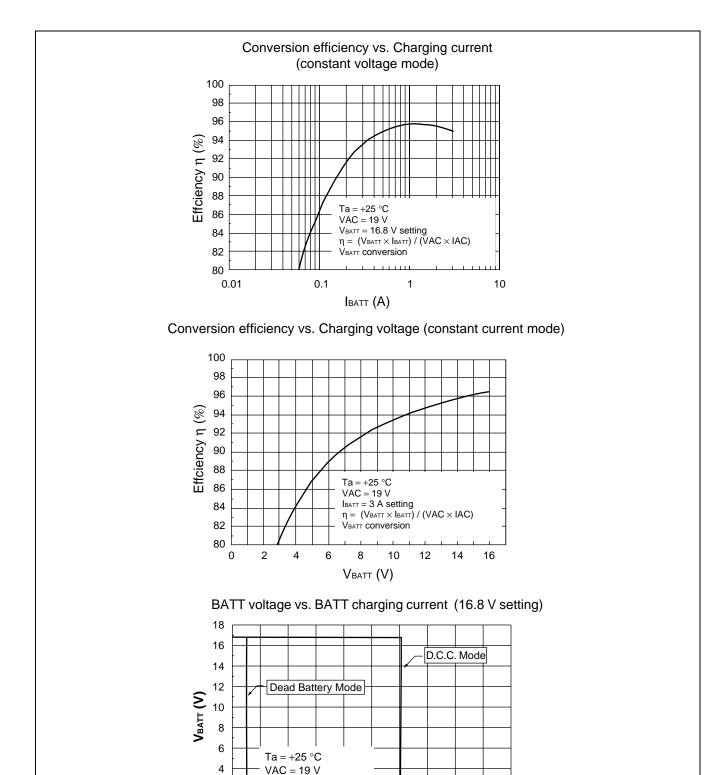

$$\begin{split} IC_{Lrms} & \geq \frac{ \left(V_{IN} - V_{O} \right) \, t_{ON} }{ 2 \sqrt{3} L } \\ & \geq \frac{ \left(25 - 16.8 \right) \, \times 0.672 }{ 2 \sqrt{3} \times 15 \times 10^{-6} \times 300 \times 10^{3} } \\ & \geq \frac{ 707 \, mArms}{ } \end{split}$$

12.6 V output


$$\begin{split} IC_Lrms & \geq \frac{ \left(V_{IN} - V_O \right) \, t_{ON} }{ 2 \sqrt{3} L } \\ & \geq \frac{ \left(22 - 12.6 \right) \, \times 0.572 }{ 2 \sqrt{3} \times 15 \times 10^{-6} \times 300 \times 10^3 } \\ & \geq \frac{ 690 \, mArms}{ } \end{split}$$

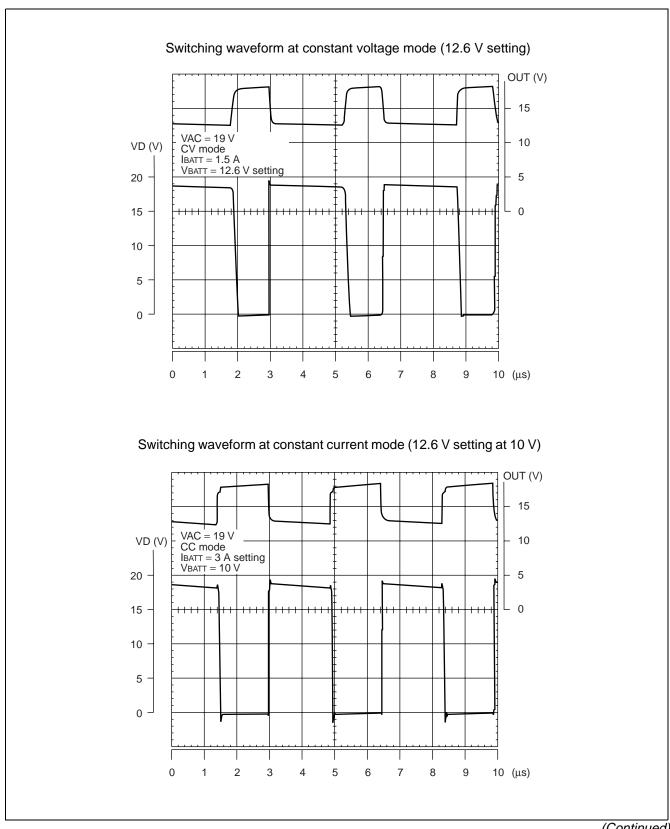
MB39A114

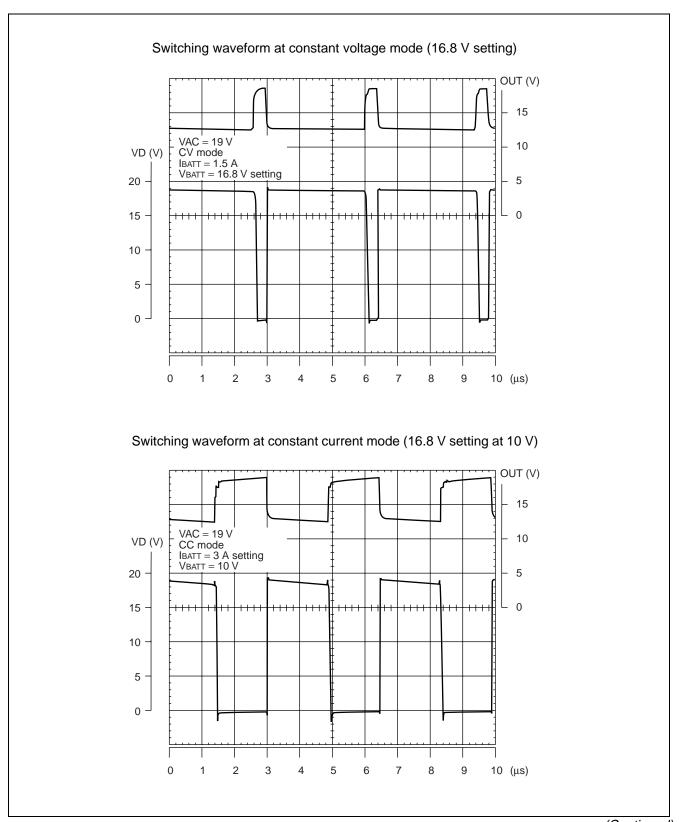

■ REFERENCE DATA

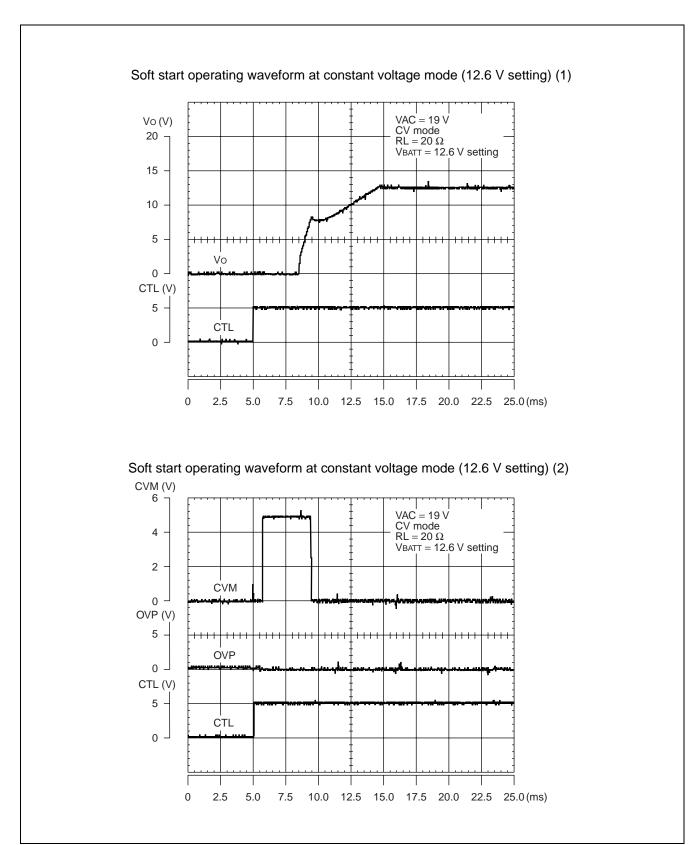


Conversion efficiency vs. Charging voltage (constant current mode)

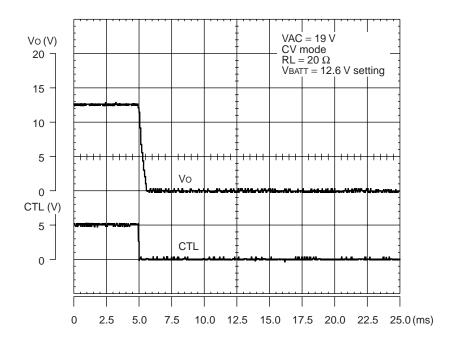
BATT voltage vs. BATT charging current (12.6 V setting)

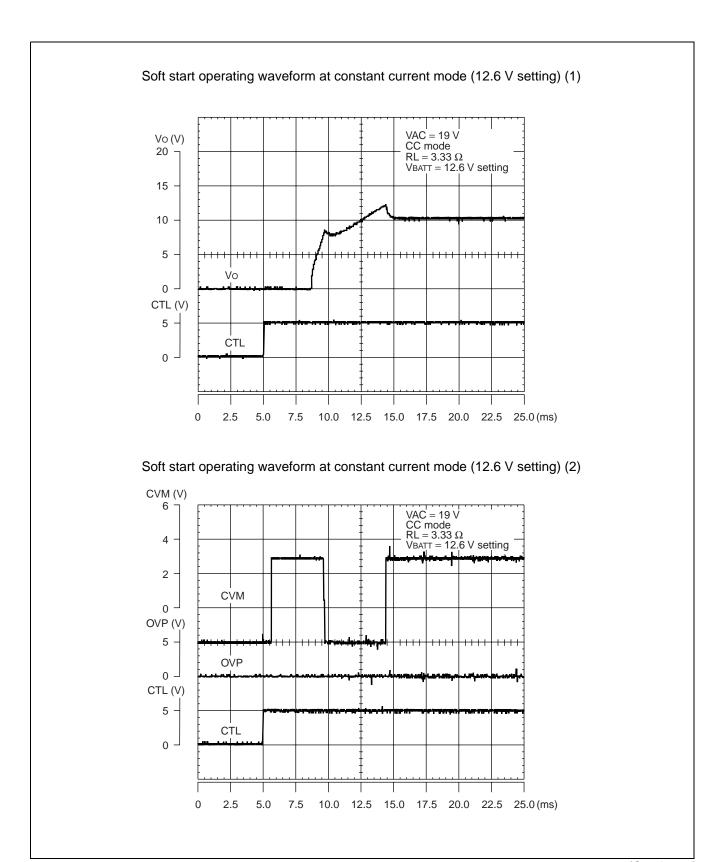

VBATT = 16.8 V setting

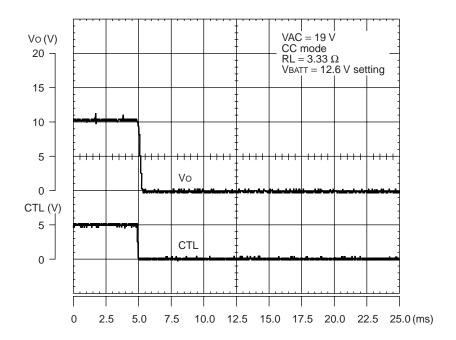

D.C.C. Mode: Dynamically-controlled charging


0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 IBATT (A)

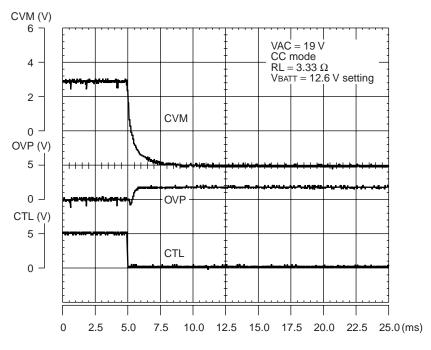
2

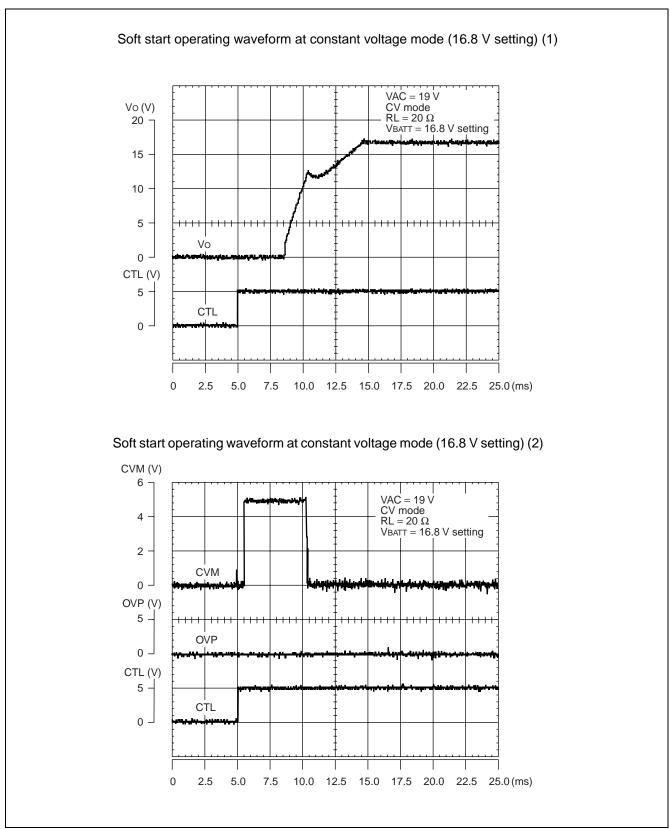

0

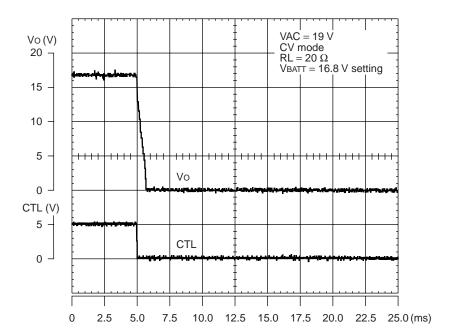




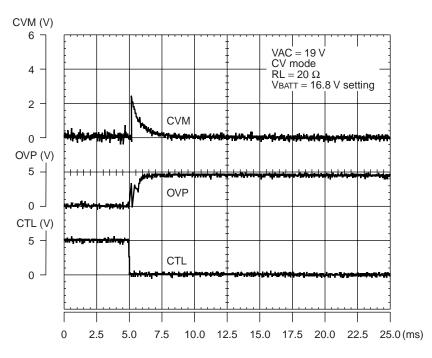
Discharge operating waveform at constant voltage mode (12.6 V setting) (2)

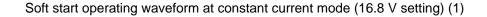


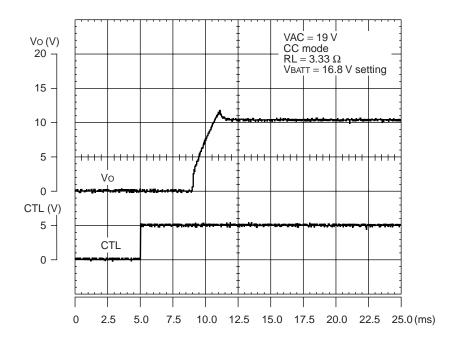


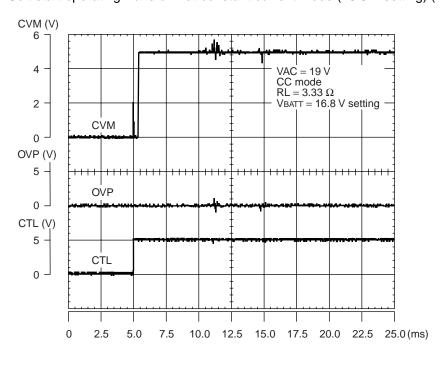


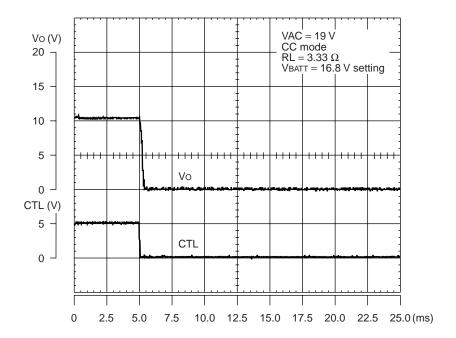
Discharge operating waveform at constant current mode (12.6 V setting) (2)

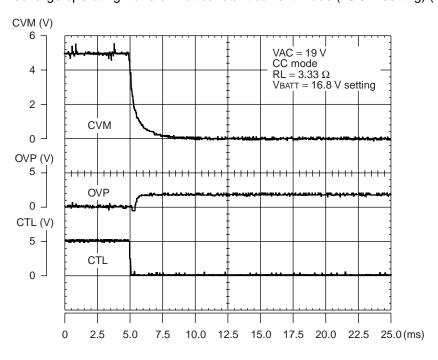







Discharge operating waveform at constant voltage mode (16.8 V setting) (2)

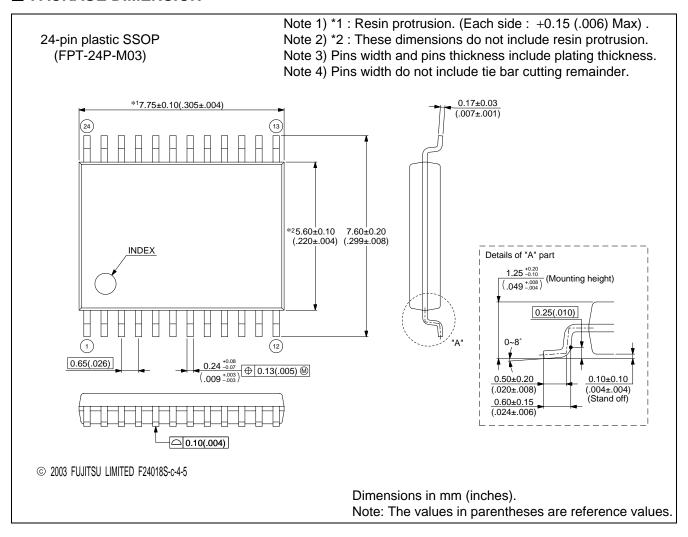



Soft start operating waveform at constant current mode (16.8 V setting) (2)

Discharge operating waveform at constant current mode (16.8 V setting) (1)

Discharge operating waveform at constant current mode (16.8 V setting) (2)

MB39A114


■ USAGE PRECAUTIONS

- Printed circuit board ground lines should be set up with consideration for common impedance.
- Take appropriate static electricity measures.
 - Containers for semiconductor materials should have anti-static protection or be made of conductive material.
 - After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
 - Work platforms, tools, and instruments should be properly grounded.
 - Working personnel should be grounded with resistance of 250 k Ω to 1 M Ω between body and ground.
- Do not apply negative voltages.
 - The use of negative voltages below –0.3 V may create parasitic transistors on LSI lines, which can cause abnormal operation.

■ ORDERING INFORMATION

Part number	Package	Remarks
MB39A114PFV	24-pin plastic SSOP (FPT-24P-M03)	

■ PACKAGE DIMENSION

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0405

© FUJITSU LIMITED Printed in Japan